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Abstract

Real-world organizations are riddled with cooperation problems, i.e., instances in which workers

need to exert effort voluntarily to achieve efficient collective outcomes. To sustain cooperation at the

group level, the experimental literature has demonstrated the centrality of reciprocal preferences. We ran

lab-in-the-field experiments in the context of open source software development teams to provide the

first real-world evidence that highly reciprocating groups are not necessarily more successful in practice.

In fact, they are more likely to fail, and only outperform other teams conditional on survival. Our field re-

sults therefore suggest that mechanisms aimed at screening non-reciprocal workers alone are unlikely to

generate a self-sustained cooperative equilibrium at the organizational level. We use the dynamic struc-

ture of our data on field contributions to demonstrate the underlying theoretical mechanism. Reciprocal

preferences work as a catalyst at the team level: they reinforce the cooperative equilibrium in good times,

but also make it harder to recover from a negative signal. We suggest that future experimental research

should explore the nature of the relational or “implicit” contracts that allow workers to avoid inefficient

cooperation breakdowns in the face of imperfect monitoring or adverse shocks.
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1 Introduction

Cooperation problems, i.e., instances of social dilemma where the interest of the group is not

in line with that of its individual members, are ubiquitous within organizations.1 In most in-

dustries, successful organizations are the ones in which co-workers readily cooperate by sharing

relevant information and knowledge, helping each other, and collectively engaging in problem

solving.2 Because contracts are incomplete by nature, organizations members often need to co-

operate voluntarily, i.e., to act in the interest of their group at a cost to themselves, in order to

achieve efficient organizational outcomes. As a result, whether and how voluntary cooperation

can be sustained within organizations has long been recognized as a high-stake research question

in organizational behavior, spanning the disciplines of economics (Groves et al., 1977), sociology

(Marwell and Ames, 1979), political science (Olson, 1971) and social psychology (Dawes, 1980).

Over the past decades, experimental research has clearly shown that most individuals endorse

reciprocity in social dilemma situations. They are “conditional cooperators”: willing to cooperate

as long as others do so as well (see Chaudhuri (2011) for a survey). A major consequence of this

preference is that cooperation is highly fragile within organizations (Fischbacher and Gächter,

2010). Reciprocal workers withdraw their willingness to cooperate whenever they feel like their

co-workers are not doing their “fair share.” In repeated experiments, this triggers a self-reinforcing

process that eventually leads to the breakdown of cooperation (see Ledyard (1994) for an extensive

review).

In order to sustain cooperation at the group level, experimental research has demonstrated the

necessity to discipline non-reciprocal types through, e.g., decentralized (“peer”) monetary punish-

ment (Fehr and Gachter, 2000; Gächter et al., 2008), or screening (Page et al., 2005; Cinyabuguma

et al., 2005; Charness and Yang, 2014). The message of this literature is that the cooperation break-

down problem can be solved (i.e., a cooperative equilibrium reached) by mechanisms that enable

strong reciprocity at the group level, such as designing employment contracts that screen non-

reciprocal workers (Kosfeld and Von Siemens, 2011; Bartling et al., 2012).

In this paper, we argue that the exclusion of non-reciprocal workers alone may not be a suf-

1By “organization”, we mean any group or team of individuals who work together towards some shared purpose.

This could be a nation, a firm, a not-for-profit organization, or an open innovation community (e.g., a research team).
2Among many other examples, see Gittell (2000) and Gittell et al. (2004) for the U.S. airlines industry, Ichniowski

et al. (1997) for the steel industry, Dyer and Nobeoka (2000) and Helper and Henderson (2014) for the automobile

industry, and Gittell et al. (2010) for the health care sector.
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ficient condition to prevent cooperation breakdowns from occurring within real-world organiza-

tions. The reason is quite simple: to the contrary of most laboratory experiments,3 the details

of the cooperative game played by organization members in the field are usually not common

knowledge. In the real world, individuals need to learn the details of the cooperative game they

play as they work together. This includes the set of possible actions available to each player in

various (and possibly unforeseen) contingencies, together with their associated costs and orga-

nizational benefits. Those parameters are typically heterogeneous across group members and

subject to change over time.

The consequence is straightforward. Contrary to subjects in lab experiments, individuals in the

field receive noisy signals of the willingness of their peers to cooperate. Those signals must then

be interpreted, notably in the light of the history of previous interactions within the organization

– otherwise referred to as “norms” or “culture” (Kreps, 1990). Because reciprocity is both the key

to sustained cooperation and the main mechanism through which it unravels (Fischbacher and

Gächter, 2010; Chaudhuri, 2011), highly reciprocating groups may not always be more successful

in practice. Over the course of the relationship, even highly reciprocating teams will sometimes

receive negative signals that may lead to the unraveling of cooperation. In other words, strong

reciprocal preferences allow organizations to sustain efficient cooperative equilibria, leading to

above-average performance, but they also make them more sensitive to the cooperation break-

down problem (in the case of bad news).

This paper tests these ideas in the real-world context of Sourceforge, a large open innovation

platform hosting virtual teams that seek to develop novel open source software (OSS) products.

This environment is particularly well suited to our research purposes: OSS projects tend to be

complex and uncertain, and they largely rely on voluntary code contributions from team members

in order to thrive. At the same time, the resulting software product is freely available for anyone to

use. Team members therefore face a repeated public goods dilemma in which they receive (noisy)

signals that reflect their teammates’ past contributions, and have to decide how much they want

to contribute to the project, if at all, in the current period.4

In 2011, we contacted 2,534 open source developers registered with Sourceforge. To construct

the pool of developers to be contacted, we stratified all active projects at the time according to

3A few exceptions include Bereby-Meyer and Roth (2006), Kunreuther et al. (2009), Xiao and Kunreuther (2016),

Grechenig et al. (2010) and Ambrus and Greiner (2012). In general, those experimental papers show that sustaining a

cooperative equilibrium is more difficult in uncertain environments.
4See Section 3.1 for more details on how open source software works.
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their size and license type (Belenzon and Schankerman, 2015). We eventually collected lab data on

1194 experimental subjects (i.e., a 47% participation rate) , and used their conditional contribution

decisions in the public goods game to construct our lab measure of reciprocal preferences.

In parallel, we collected field data on all the projects that our experimental subjects and their

collaborators had ever contributed to, yielding a final sample of 5,557 projects, many of which

had failed, involving 10,537 developers overall. For each project, we extracted the monthly num-

ber of code contributions (or “commits”) made by every developer. As a complement to our lab

measure of reciprocity, we use the dynamics of these real-world project contributions to propose

a generalizable field measure of reciprocity at the developer level. Inspired by the lab experiment,

the idea behind this measure is to look at how each developer reacts to exogenous variations in

team members’ past project contributions. We show that the lab and field measures of reciprocity

are strongly correlated. Since we could only recruit from active projects at the time of the experi-

ment, we use the field measure to expand our research sample in the direction of previously failed

projects and their members.

Finally, we collect all available project-level information: age, license type, programming lan-

guages used, working languages used at the team level, and target user population. We also sep-

arately extract Sourceforge’s flagship measure of project-level success, referred to as the “activity

percentile,” which we use as an exogenous proxy for success at the team level.

The paper makes two main contributions to the literature on cooperation. First, we combine

our lab and field measures of reciprocal preferences at the worker level to show that organizations

with a higher share of reciprocal members are not necessarily more successful. In fact, consistent

with our hypothesis, they are significantly more likely to fail on average, and only outperform

other teams conditional on survival. Second, we analyze the dynamics of field contributions in the

data to identify the underlying micro-level mechanism. Reciprocal preferences work as a catalyst

at the organizational level. They reinforce the cooperative equilibrium (foster increased contribu-

tion levels) when team members receive positive signals, but also accelerate the slowdown when

they receive negative ones – leading to a lower probability of recovery after a period of inactivity

(the project dies).

Our field results suggest that strategies aimed at screening workers according to their social

type (through, e.g., sorting (Page et al., 2005) or contract design (Bartling et al., 2012)) are unlikely

to generate a self-sustained cooperative equilibrium within real-world organizations. Instead,

future experimental and theoretical research on cooperation should focus on how organizations
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can reach a cooperative equilibrium in the face of adverse shocks and imperfect monitoring. To

do this, they must define the implicit norms that govern behavior among team members since

those implicit norms, or “relational contracts,” allow workers to make sense of the signals they

receive and, ultimately, to avoid inefficient cooperation breakdowns (Chassang, 2010; Acemoglu

and Jackson, 2015).

The rest of the paper proceeds as follows. Section 2 discusses the relevant related literature.

Section 3 provides some background on the OSS environment and describes our data collection

strategy. Section 4 defines our laboratory and field measures of reciprocity preferences and dis-

cusses their correlation. Section 5.1 presents our main results on the relationship between reci-

procity and success at the team level, and Section 5.2 leverages the panel structure of our data

to provide evidence on the behavioral mechanism underlying these results. Section 6 provides a

conclusion.

2 Related literature

2.1 The lab-in-the-field literature

The early literature attempting to identify individual preferences, beliefs and institutional de-

signs encouraging voluntary cooperation relied on laboratory experiments (Ledyard, 1994; Roth,

1995). One of its most robust findings is that cooperation gradually decays in repeated experi-

ments. While most individuals initially make non-zero contributions, their willingness to coop-

erate steadily declines with repetition (see Chaudhuri (2011) for a survey). This finding follows

from the fact that many individuals exhibit reciprocal preferences: they are “conditional cooper-

ators” (i.e., willing to cooperate as long as others do so as well), hence the positive initial contri-

bution levels. However, because reciprocators have a preference for matching the contributions

they observe or expect from others, cooperation will inevitably collapse if: (i) the group contains

free-riders, who never cooperate in order to maximize their private payoffs; (ii) the group con-

tains “weak” reciprocators, who behave as conditional cooperators, but with a “self-serving bias”

(Fischbacher et al., 2001) (i.e., they contribute, but generally less than others); (iii) some group

members have reasons to believe that others will reduce their contributions in the future.

The major takeaway from this lab-based literature is that even though most individuals are

not selfish, cooperation is highly fragile (Fischbacher and Gächter, 2010). In particular, reciprocal

preferences are crucial to sustain cooperation within organizations, but require institutions that
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either discipline non-reciprocating types (through monetary and non-monetary punishment), or

provide a mechanism for excluding them from the group (Fehr and Gächter, 2000; Chaudhuri,

2011; Bartling et al., 2012).

More recently, the literature has questioned the field (referred to as “external” or “ecological”)

validity of these lab-based results. Since reciprocal preferences are hard to identify in the wild,

empirical papers increasingly rely on “lab-in-the-field” designs (see Gneezy and Imas (2017) for a

detailed description).5 This fast-growing literature relies on validated lab paradigms to elicit psy-

chological traits or preferences, and links these measures to outcomes of theoretical interest in the

field. In other words, the spirit of lab-in-the-field experiments is to match individuals’ behaviors

in experimental games (the lab) with choices by the same individuals in the field and/or the per-

formance of the organizations they work in. This approach is a powerful tool for organizational

researchers interested in microfounding the processes that drive aggregate outcomes in the field

(Felin and Foss, 2005; Felin et al., 2015; Bitektine et al., 2018).

Initial lab-in-the-field studies linked behavior in the lab to individual behaviors and outcomes

in field environments, without focusing on group-level outcomes. In a seminal paper in eco-

nomics, Karlan (2005) obtained experimental measures of reciprocity at the individual level and

shows that they predict loan repayment among participants in a microcredit program. Charness

and Villeval (2009) show that senior workers are typically more cooperative than junior ones in

a standard public goods game. Fehr and Leibbrandt (2011) and Leibbrandt (2012) conducted a

public goods game among Brazilian shrimp catchers and sellers, and show that more cooperative

subjects are less likely to engage in over-extraction, and achieve better market outcomes. Kosfeld

and Rustagi (2015) show that the way traditional leaders “punish” players in their community

based on how they behave in a public goods game predicts how successfully they cooperate in the

field. 6

5This would correspond to an “artefactual field experiment” in the terminology of Levitt and List (2009).
6There is a similar literature in political science: Finan and Schechter (2012) experimentally elicit reciprocal prefer-

ences in a population of community leaders in Paraguay and show that highly reciprocal village chiefs are more likely

to be targeted by politicians for vote-buying purposes. Similarly, Baldassarri and Grossman (2011) and Grossman and

Baldassarri (2012) demonstrate that cooperation in a repeated public goods game where a “leader” has the ability to

punish group members based on past contributions predicts field cooperation among Ugandan farmers, but only when

the leader is elected by the people – which corresponds to the way chiefs are appointed in this field setting. Gilligan

et al. (2014) use exogenous variation in the extent to which local communities in Nepal were affected by civil war to

show that stronger exposure to violence can lead to collective coping through social cohesion, as measured by subjects’

behavior in a standard public goods game. In a related paper, Blair (2018) runs lab-in-the-field experiments in Liberia
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However, there are fewer lab-in-the-field studies devoted to the link between reciprocal prefer-

ences and group-level outcomes. The first paper to study this question in a real-world setting was

Anthony (2005), who did not adopt a lab-in-the-field approach per se, but instead relied on survey

answers. The paper measures reciprocal behavior in 106 microcredit borrowing groups in the U.S.

through a number of survey questions answered by randomly selected group members. It finds

reciprocity to be the variable the most closely associated with low levels of loan delinquency, and

higher group longevity. Barr and Serneels (2009) were the first to obtain experimental measures

of reciprocal preferences from a sample of workers in 20 Ghanaian manufacturing firms, which

they then coupled with survey-based data on workers’ individual wages and aggregate firm pro-

ductivity. They found that reciprocal workers generally earn higher wages, and report a strong

firm-level relationship between reciprocating behavior and aggregate productivity. Rustagi et al.

(2010) studied 49 local groups that participated in a publicly-funded forest conservation program

in Ethiopia where they were responsible for maintaining and cultivating the forest (the “public

good”). They elicited reciprocal preferences using a conditional public goods game (Fischbacher

et al., 2001), and notably measured the share of “conditional” and “weak conditional” cooperators

in each group, which they then associated with an independently collected measure of success in

forest commons management. They found that groups with a larger share of highly reciprocating

types are generally more successful. Similarly, Carpenter and Seki (2011) use the public goods

game to elicit reciprocal preferences from Japanese fishermen. Even though their sample only

contains 12 fishing crews, they found that those that exhibited higher levels of reciprocity were

generally more productive.

Taken together, those papers reveal a clear empirical result: groups composed of more recip-

rocal types, as measured by incentivized lab experiments, achieve significantly better outcomes

in a variety of settings where members face social dilemmas such as common forest manage-

ment, profit maximizing firms and financial markets. This unambiguous relationship between

reciprocity and group-level success in the field is surprising in light of the lab literature on so-

cial dilemma, where reciprocal preferences drive cooperation levels down whenever conditional

cooperators observe (or believe) that some team members are not doing their “fair share.”

We add to this literature by highlighting a potential limitation of the lab-in-the-field method-

ology, which may mechanically produce the observed strong positive relationship between reci-

to show that exposure to war-time violence increases the government’s ability to instruct citizens to make voluntary

contributions to public goods.
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procity and organizational success. The key to lab-in-the-field designs is to recruit the experimen-

tal subjects directly from their work environment. We argue that this introduces a bias, at both the

individual and organizational level. Failed organizations are much less likely to be sampled since

the members are no longer present on the research site. More generally, for organizations that

still exist, the propensity of members to participate in the experiment might be strongly correlated

with the level of activity of the project. This sampling bias is likely to be particularly severe in field

settings where an inability to sustain cooperation can more easily lead to the death of the organi-

zation (e.g., in competitive markets, innovation-driven activities or volunteering communities).

To address this concern, we propose an additional way to use lab data in the field: we use the

lab data as a benchmarking tool for subjects’ reciprocity motives. We then propose a generaliz-

able field measure of reciprocity (inspired by the experimental game) and show that the lab and

field measures are strongly correlated. To build our field measure, we leverage the panel struc-

ture of our data and measure developers’ reactions to the past observed contribution decisions

of their teammates (see Section 4 for details). Because this field measure is computed based on

archival data, we can use it to expand our research sample in the direction of previously failed

organizations.

2.2 Reciprocity and social exchange theory

At a theoretical level, our paper is related to the literature on social exchange theory (SET). Since

the early contributions of Homans (1961), Blau (1964) and Emerson (1976), SET has been a highly

influential theoretical construct in social psychology and organizational behavior. More precisely,

our experimental and field measures of reciprocity are directly linked to the most paradigmatic

instance of social exchange, known as “reciprocal exchange” (Cropanzano and Mitchell, 2005). In

this framework, reciprocity can be seen as a social norm (Gouldner, 1960) whereby an individual

receiving an unconditional benefit from another party feels bound to respond in kind.7 Positive

reciprocity dynamics therefore lead to a form of mutual commitment resulting in a virtuous, self-

reinforcing cycle of cooperation.

7The formal definition of reciprocity is strikingly similarly in economics (see Sobel (2005), Dufwenberg and Kirch-

steiger (2004) and Falk and Fischbacher (2006)). Furthermore, the result that individuals differ in how strongly they

endorse the norm of reciprocity, obtained in the context of the experimental literature on the decay of cooperation in

repeated public goods experiments (Fischbacher et al. (2001); Fischbacher and Gächter (2010)), had previously been

established in the context of lab-based tests of SET (see Eisenberger et al. (1987)).
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Much of the existing literature to date has relied on laboratory experiments to test these predic-

tions (see Cook and Emerson (1978), Montgomery (1996), Molm et al. (2000), Molm (2003), as well

as Cook et al. (2013) for a review). Our results add to this literature by exploring how the dynam-

ics of reciprocal exchange occur in a real-world, online generalized exchange system such as OSS,

where peers intend to co-produce a public good based on voluntary contributions. We take ad-

vantage of the fact that OSS teams differ in the extent to which their members endorse reciprocity,

allowing us to link group-level reciprocity to an objective measure of organizational success. By

combining lab-in-the-field experiments with the analysis of behavioral data over time, we hope

to convince organizational researchers that field research can achieve relatively high levels of in-

ternal validity, as well as ecological relevance (Schram, 2005). We argue that this is especially true

in computerized environments where researchers can gather a significant amount of field data on

real-world behavior (Lazer et al., 2009), while retaining the ability to conduct controlled experi-

ments (Hergueux and Jacquemet, 2015).

Note that our work should be set apart from the important literature on negative reciprocity.

In a recent survey of the literature on social exchange, Cropanzano et al. (2017) note that SET

actually “fails to distinguish the presence of negative constructs (e.g., abuse) from the absence

of positive constructs (e.g., support).” They argue that this leads to some confusion in terms of

behavioral predictions: negative behavior is predicted to lead to negative reciprocal responses

(i.e., negative reciprocity), whereas the absence of positive behavior should, instead, lead to a lack

of positive response (i.e., the decay of cooperation). Our empirical results illustrate the relevance

of this distinction for SET: in the face of relative inactivity, reciprocal developers adjust their own

cooperation level downwards, and eventually stop contributing. Since the ability to “punish”

non-reciprocating types is altogether absent from our field of study (see Section 3.1), our paper is

not related to the literature on negative reciprocity.8 In this respect, our field setting is most closely

related to lab designs where subjects can select their teammates based on observed past behavior,

which has been found to have a dramatic impact on their ability to sustain very high levels of

cooperation over time (see Page et al. (2005), Cinyabuguma et al. (2005) and Charness and Yang

8In their review, Cropanzano et al. (2017) argue that positive and negative reciprocity preferences might in fact not

be strongly correlated within subjects. To the best of our knowledge, no experimental design in the literature on public

goods provides subjects with both the ability to exclude and/or punish other group members based on past contribution

behavior. As a result, “punish” could be selected as a second best response by some conditional cooperators in designs

à la Fehr and Gachter (2000), where they would in fact prefer to break off the relationship (e.g., “leave”).
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(2014)).9

2.3 Relational contracts

At a theoretical level, our paper also connects to a related but distinct literature on relational

(or “implicit”) contracts in organizational economics. Chassang (2010) studied how agents can

develop a successful cooperative relationship when the details of cooperation are not common

knowledge. In his model, teammates can observe agents’ actions and their associated payoffs.

However, there is uncertainty regarding which actions are “cooperative” since they do not always

yield the intended organizational benefits. Relationships are therefore quite sensitive to adverse

shocks, and may only become resilient after significant “relational knowledge” has been built

among the parties involved. The concept of relational knowledge implies that a workable subset

of cooperative actions could be identified and developed as a routine at the organizational level.

Because this routine develops as a function of agents’ previous history, random events occurring

during the relationship can lead to unexpected cooperation breakdowns and/or have a lasting

impact on the way players approach cooperation. In a related paper, Gibbons and Henderson

(2012) argue that the relational contracts that sustain cooperation in the field have to solve the twin

problem of credibility (i.e., the misalignment of incentives within the organization) and clarity (i.e.,

the uncertainty over which actions are collectively considered “cooperative” for a given agent in

a given situation). Such informal cooperative agreements take time to develop and are highly

path-dependent (see also Acemoglu and Jackson (2015)).10

Qualitative research has shown that organizations dedicate enormous resources to building

and maintaining relational contracts (Mayer and Argyres, 2004; Kellogg, 2009). Unfortunately, the

existing experimental literature provides very little guidance regarding the type of informal norms

that are most likely to sustain an efficient cooperative equilibrium at the organizational level, with

two notable exceptions. Fudenberg et al. (2012) studied a repeated public goods game where in-

tended actions are implemented with noise (i.e., uncertain intentions). They experimentally show

9Note that the possibility of decentralized punishment does not necessarily lead to enhanced cooperation and wel-

fare, especially in noisy environments such as those considered in this paper (see Grechenig et al. (2010) and Ambrus

and Greiner (2012)). See also the designs in which punished subjects decide to engage in welfare reducing “anti-social

punishment” (Denant-Boemont et al., 2007; Nikiforakis, 2008; Nikiforakis et al., 2012; Herrmann et al., 2008).
10Because of this, relational contracts are also very difficult to imitate and can represent a significant source of com-

petitive advantage. See Gibbons and Henderson (2012) for a discussion of relational contracts at Lincoln Electric, Toyota

and Merck, as well as Helper and Henderson (2014) for General Motors.

10



that “lenient” (i.e., not retaliating after the first signal of defection) and “forgiving” (i.e., returning

to cooperation after retaliation) strategies are most efficient in this case. More recently, Gibbons

et al. (2020) studied a repeated bilateral trade relationship where the state of the world is subject

to exogenous shocks (i.e., uncertain environment). They found that, in such environments, rela-

tional contracts based on general principles perform better than those that adhere to specific rules,

but that high-performing relational contracts are typically difficult to build. By empirically show-

ing that screening workers according to their social type is unlikely to eliminate the cooperation

breakdown problem, we hope to encourage more experimental research of this sort.

3 Setup and data collection

3.1 Open source software

To set the stage, we provide some background information on open source software. OSS currently

mobilizes millions of loosely-connected developers from around the world who self-organize in

virtual teams to develop software products (Faraj et al., 2011; Levine and Prietula, 2013). OSS is

responsible for most of the basic utilities on which the Internet runs (e.g., the Apache Web server),

popular programming languages (e.g., Python, R) and programming environments (e.g., Eclipse).

It also competes with many of its proprietary counterparts in the realm of end-user applications

(e.g., Android), operating systems (e.g., Linux), and Web browsers (e.g., Firefox). At present, most

businesses and public organizations rely on OSS for their daily activities (Walli et al., 2005; Ghosh,

2007; Greenstein and Nagle, 2014).

Apart from the above-mentioned projects, which are both very large and quite well-known,

hundreds of thousands of smaller-scale OSS projects are hosted by online platforms such as Source-

forge, which was dominant at the time of our study, and, more recently, Github. These platforms

provide developers with a set of free standard online tools for collaborative software development

(e.g., a code versioning system, a bug tracker). Any developer can initiate a software project on

such platforms, and the source code of each project is readily available for anyone to see and mod-

ify. Projects are therefore developed in the context of geographically distributed virtual teams that

coordinate their activities in the absence of formal leadership, pre-specified design rules or mar-

kets (Benkler, 2002; Hippel and Krogh, 2003; Von Krogh and Von Hippel, 2006). Contributors typ-

ically resolve potential disagreements over future developments through discussion, and, in some

rare cases, through “forking”, whereby some team members decide to split off and develop their
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own version of the project. As a result, OSS is usually seen as a “technical meritocracy” (Scacchi,

2007) where developers typically acquire influence by contributing elegant code that “just works”

(Weber, 2004; Marlow et al., 2013). Similar to fundamental research, OSS development has thus

been modeled as an evolutionary learning process, driven by peer criticism and error correction

(Lee and Cole, 2003).

Because developers need to invest time and effort contributing to projects that are made freely

available for anyone to use, OSS has been described as a privately-produced public good (O’Mahony,

2003) where developers reveal their code in the expectation that others will reciprocate (Maurer

and Scotchmer, 2006). About 50% of OSS developers are volunteers who only contribute in their

free time, while the other half derives either direct or indirect revenue from their contributions

(Hertel et al., 2003; Lakhani et al., 2005). In the latter case, the developer can be paid by a firm to

dedicate working hours to a project that serves corporate goals (Dahlander and Magnusson, 2005).

Some innovation-heavy firms (e.g., Google) also allow their employees to dedicate working hours

to any project of their choosing, on the assumption that developing OSS will (i) allow them to

acquire new skills, and (ii) keep them in touch with a fast-moving open innovation community.

3.2 Collecting lab data

In May 2011, 2,534 OSS developers registered with Sourceforge.net were contacted and asked

to participate in an online experiment that we describe in more detail in Section 3.2.2. The ex-

perimental platform remained active for ten complete days, and 1,194 subjects – a 47% take-up

rate – participated. Before describing the details of the experimental procedure, we will begin by

describing how the initial sample of 2,534 developers was selected out of the large Sourceforge

community that counted 221,802 projects registered in 2010.

3.2.1 Experimental sample selection

To select the initial pool to be contacted, we set up a two-tier selection procedure, first select-

ing projects and then selecting individuals within these projects. To select the projects, we used

two stratification variables: size of project and type of license, as described below. There is great

heterogeneity between Sourceforge projects in terms of the number of contributors, and previ-

ous research efforts have been somewhat biased towards a handful of large and highly successful

projects (Crowston et al., 2012). To avoid this pitfall, the first stratification variable that we consid-

ered was the project size, defined as the number of contributors. Second, following Belenzon and
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Schankerman (2015), who argue that reciprocal developers prefer restrictive project licenses, we

used the variable “license restrictiveness” as an additional stratification criterion, making it more

likely that we would include diverse cooperative types in our pool.11

Specifically, we extracted all the Sourceforge projects that were active in 2010, defined as hav-

ing either solved a bug or added a feature in 2010. This yielded a sample of 1,577 active projects.

After excluding the projects for which the SVN logs were inaccessible (i.e., the logs to the software

revision control system that provide detailed information on code contributions at the developer

level, information necessary to conduct the analysis), we were left with a sample of 1,242 active

projects.

Of the 8,858 developers who contributed to those active projects, we identified those who

had some development activity in 2010. We then ordered projects according to their number

of active developers, and relied on Belenzon and Schankerman (2015)’s classification of the 44

existing OSS license types to label their licensing terms as highly, moderately or weakly restrictive.

Since there were only 83 projects with more than seven active contributors, we selected all of

these projects, irrespective of their license terms. For all the projects with six or fewer active

contributors, we chose to construct a sample containing an equal number of highly, moderately

and weakly restrictive licenses. For instance, out of the 365 projects that had only one active

developer, 239 featured highly restrictive licenses, 57 featured moderately restrictive licenses and

69 featured weakly restrictive licenses. We thus retained the 57 projects with moderately restrictive

licenses and then randomly selected 57 projects from the pool of projects with both highly and

weakly restrictive licenses. We ended up with a sample of 322 active projects, balanced in terms of

both size and license restrictiveness. Table 1 lists the number of projects selected by order of size

and license type.

For the 322 projects selected, we kept all 1,019 developers who were active in 2010. In addition,

we also randomly selected three non-active developers. We ended up with a sample of 2,534

Sourceforge developers eligible to participate in the experiment. Table 1 summarizes the selection

procedure.

11Two main features define the restrictiveness of a project license: (i) the extent to which the code and any of its

modifications can subsequently be embedded in commercial software, and (ii) whether modifications to the code have

to remain open source (i.e., free to use, study, share and modify by anyone).
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TABLE 1: CONSTRUCTING THE SAMPLE OF ELIGIBLE SUBJECTS

No. of active developers License Total no. of No. of projects Active developers Non-active developers

on project restrictiveness projects randomly selected randomly selected randomly selected

1 High 239 57 57 57

1 Moderate 57 57 57 57

1 Low 69 57 57 57

2 High 118 28 56 56

2 Moderate 28 28 56 56

2 Low 29 28 56 56

3 High 51 12 36 36

3 Moderate 12 12 36 36

3 Low 15 12 36 36

4 High 24 6 24 18

4 Moderate 13 6 24 18

4 Low 6 6 24 18

5 High 18 7 35 21

5 Moderate 9 7 35 21

5 Low 7 7 35 21

6 High 18 5 30 15

6 Moderate 5 5 30 15

6 Low 5 5 30 15

7+ 83 83 962 249

3.2.2 Experimental procedures

With the support of the Sourceforge platform, we collected the e-mail addresses of all 2,534 se-

lected developers and sent them individual invitations to participate in the experiment. By click-

ing on a link included in the invitation message, eligible developers were able to log into the

system with their Sourceforge username, which allowed us to identify them and subsequently

collect their entire history of contributions to OSS. Subjects were then redirected to the welcome

screen of the experimental platform.

Given that this was an online experiment, we needed a fully self-contained interface.12 The

welcome page of the decision interface provided subjects with general information about the ex-

periment, including the number of sections, expected completion time and how earnings are com-

puted. In order to minimize potential demand effects and in-group biases, we were very careful

not to present the study as being OSS-oriented. We made it very clear on the introductory screen

that subjects would interact with a diverse pool of Internet users. Final earnings were computed

by randomly matching our subjects with individuals from a pool made up of OSS developers,

Wikipedia users and students.

12Our design strictly follows the experimental procedures detailed in Hergueux and Jacquemet (2015). These pro-

cedures were specifically developed to strengthen the internal validity of Internet-based experiments. Their reliability

was established through a careful comparison of decisions elicited in the lab and online.
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The key experimental game we used to elicit reciprocal preferences is the one-shot public

goods game.13 This game is played in groups of four players, each with an initial endowment

of $10. Group members need to decide how much to contribute to a common project. Each dollar

invested in the common project produces $1.6, which is then equally distributed among group

members. Thus, a $1 investment only yields a private return of $0.4, but benefits all other mem-

bers of the group. This design captures the social dilemma faced by open source developers in the

field: contributing code to OSS can be individually costly, but is socially efficient. Specifically for

player i who makes a contribution contribi, the final private payoff is given by:

πi = 10− contribi + 0.4
4

∑
j=1

contribj.

Following Fischbacher et al. (2001), we elicited two types of contribution decisions: first an

unconditional contribution, and then a conditional contribution. For the unconditional contribu-

tion, each subject had to decide on his or her contribution in the game described above. For the

conditional contribution, each subject determined his or her intended contribution for each possi-

ble value (0,1,2, . . . 10) of the average contribution of the three other members of the group. The

conditional contributions allowed us to measure subjects’ willingness to behave reciprocally (i.e.,

to be conditionally cooperative). This design is incentive-compatible since, after the match with

other participants has been carried out, one randomly selected decision (i.e., unconditional or con-

ditional) is used to compute the subjects’ earnings.14 The screen eliciting conditional contributions

is presented in Figure 1.

13We used a one-shot design because a repeated game would introduce strategic concerns that would obscure the

interpretation of subjects’ behaviors. After the public goods game, subjects were presented with other decision tasks

that we do not use in the context of this paper.
14More specifically, two group members are randomly selected to make an unconditional contribution. The contri-

bution of the remaining two group members is then determined based on their conditional decision, according to the

average of the unconditional contributions.

15



FIGURE 1: THE DECISION SCREEN OF THE CONDITIONAL PUBLIC GOODS GAME

One important methodological aspect of the online implementation of the experiment is to

guarantee a quick and thorough understanding of the instructions when no interaction with the

experimenter is possible. We strengthened the internal validity of our online experiment through

three distinctive features of the interface. First, we included novel flash animations illustrating the

written experimental instructions at the bottom of the instruction screen (see Figure 2).15 Second,

the instruction screen was followed by a screen providing some examples of decisions, along with

a detailed calculation of the resulting payoffs for each player. These examples were supplemented

on the subsequent screen by an earnings calculator. On this interactive page, subjects were allowed

to test any scenario they wanted to consider. Finally, the system provided quick access to the

15The loop of concrete examples displayed in each animation was first randomly determined and then fixed for

each game. The same loop was displayed to all subjects without any other numeric information than the subject’s

initial endowments. We decided against displaying a purely random sequence of flash animations since it could have

introduced uncontrolled and subject-specific noise-through, e.g., anchoring on a particular behavior or sequence of

events. Our goal with these animations was to illustrate the basic gist of each decision problem in an accessible way

while preventing specific numerical examples and results from predominating in the subjects’ minds.
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instruction material at any moment during decision-making.

FIGURE 2: THE INSTRUCTION SCREEN OF THE PUBLIC GOODS GAME

Final payoffs were computed using the earnings from one randomly selected decision task.

In addition, the players obtained a $10 participation fee. Final payments were made via an au-

tomated PayPal transfer.16 It is important to stress that OSS developers can be very hostile to

monetary rewards. In order to ensure that the experiment was equally incentive-compatible for

all subjects, we allowed them to donate their final earnings to the International Committee of the

Red Cross upon completion of the experiment. This possibility was made clear on the welcome

screen of the decision interface.
16Such a payment procedure guarantees a fungibility similar to that of cash transfers in lab experiments since money

transferred via PayPal can be readily used for online purchases or easily transferred to one’s personal bank account at

no cost. We only required a valid e-mail address to process the payment. To strengthen the credibility of the payment

procedure, we asked subjects to enter the e-mail address that was (or would be) associated with their PayPal account

right after the introductory screen of the decision interface.
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We ended up collecting lab data on 1,194 developers out of the pool of 2,534 eligible to par-

ticipate. Right after the experiment and before payment, we asked subjects for some standard

demographic information, i.e., their age, gender, education and salary range. These variables are

described in Table 2.

TABLE 2: SUBJECT-LEVEL DESCRIPTIVE STATISTICS

Variable Obs Mean Std. Dev. Min Max

Age 1,192 32.20 8.42 16 72

Female 1,194 0.03 0.16 0 1

Education level 1,184 5.29 1.64 1 8

Income level 1,110 4.76 2.24 1 9

Age is measured in years.. Education level: 1 = less than high school; 2 = high school; 3 = some college; 4 = 2-year

college degree; 5 = 4-year college degree (BA, BS); 6 = Master’s degree; 7 = professional degree (MD, JD); 8 = doctoral

degree. Income level (monthly): 1 = 0 USD; 2 = less than 1000 USD; 3 = between 1000 and 2000 USD; 4 = between 2000

and 3000 USD; 5 = between 3000 and 4000 USD; 6 = between 4000 and 5000 USD; 7 = between 5000 and 7500 USD; 8 =

between 7500 and 10000 USD; 9 = more than 10000 USD.

We found that the population of OSS developers who answered our survey is generally young

(32-years-old on average) and overwhelmingly male (about 3% of developers report being female).

The average developer in our experiment has a 4-year college degree (BA, BS), with 17.5% of the

population of developers having a lower qualification than a 2-year college degree and almost

half of the population (i.e. 49%) having a Masters degree or a PhD. The average developer earns

between $2000 and $4000 per month, with 32% of the population earning less than $2000 and

20% earning more than $7500. These statics are consistent with survey studies on OSS developers

(David and Shapiro, 2008).

Finally, we also ask developers a few questions about their motivations for contributing to

OSS. Specifically, we followed the previous literature (see David and Shapiro (2008)) and asked

them to state their level of agreement with the following reasons for contributing to OSS, on a

scale ranging from 0 (“strongly disagree”) to 10 (“strongly agree”): (i) to learn and develop new

skills; (ii) to solve a problem that could not be solved by proprietary software; (iii) because I

think software should not be a proprietary product; (iv) to build myself a reputation on the OSS

developer scene; and (v) to make money. We report the mean of those self-declared motivations

in Figure 3, together with their 95% confidence interval.
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FIGURE 3: DEVELOPERS’ REPORTED MOTIVES FOR CONTRIBUTING TO OSS

3.3 Field data

In addition to the lab data, we collected panel data documenting team members’ monthly code

contributions to individual projects during the period March 2005 – February 2013. We obtained

this data from the Sourceforge Research Data Archive (SRDA),17 a project hosted at the University

of Notre Dame that collected monthly data dumps from Sourceforge so as to make them available

to the research community. Our panel data ends in February 2013, when Sourceforge put an end

to its data sharing agreement.

We collected this data for all team members belonging to (i) projects to which our starting set

of 1,194 experimental subjects contributed, and (ii) all the other projects their teammates (9,343

co-developers) worked on without their participation. We obtained a final sample of 5,557 OSS

projects involving 10,537 developers. By the end of our time period, about half of those projects

had failed and died (i.e., we observed no activity in those projects in the final 12 months of our

time period).

For each developer, we collected monthly data on the number of code contributions (i.e., “code

commits”) over those 96 consecutive months.18 In addition, we extracted the creation date of each

17See http://Archive, www3.nd.edu/ oss/Data/data.html
18A commit is a set of changes to the source code of a project that makes logical sense (i.e., implements a new feature

or solves a bug).
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project, and took advantage of the fact that OSS development teams often document the character-

istics of their projects on the Sourceforge platform to collect additional project-level information,

including license restrictiveness, popularity of the programming languages used, working lan-

guages used and target user population. (See Table 3 below.)

Finally, we needed to address the challenge of reliably measuring the level of success of OSS

projects. Indeed, since OSS projects are made freely available for anyone to use, standard measures

of popularity (e.g., sales) cannot be used as a proxy for success. In addition, since projects largely

rely on voluntary contributions for their development, measures of input (e.g., code contributions)

should be seen as an indicator of success in their own right. As a result, success needs to be defined

at the project level as a function of both user popularity (i.e., “use”) and community input (Grewal

et al., 2006; Crowston and Scozzi, 2002; Crowston et al., 2004; Van Antwerp and Madey, 2010).

We achieved this goal by extracting Sourceforge’s own ranking measure: the monthly “activ-

ity percentile” of each project, which combines the above dimensions to compute an exogenous,

dynamic measure of success. The activity percentile is automatically calculated by Sourceforge

and is prominently displayed on each project summary page. As Van Antwerp and Madey (2010)

put it, “projects with a high activity percentile are popular projects since the measure is based on

downloads, site views, development activity, and administrator activity.”

Specifically, the measure aggregates (i) the size of the project user base, (ii) the intensity of

contributors’ development activity, and (iii) the use of project-related communication channels:19

Activity Percentile =
1
3

User Tra f f ic +
1
3

Development Activity +
1
3

Project Communication.

We end this section by summarizing our project-level variables in Table 3. The average activity

percentile is relatively high in our project sample. This jointly results from the fact that (i) our de-

sign tends to focus on a minority of collaboratively authored software projects within Sourceforge,

and (ii) the platform regularly purges its data from zombie projects. The average project in our

19While it could have been interesting to decompose this indicator for the purpose of our analy-

sis, Sourceforge does not provide the disaggregated components of its activity percentile metric, and

the variables that go into its computation cannot be retrieved. The measures are defined as fol-

lows: UserTra f f ic = ln(1+total downloads)
ln(1+max[all projects]) +

ln(1+total logo hits)
ln(1+max[all projects]) + ln(1+total website hits)

ln(1+max[all projects]) , DevelopmentActivity =

ln(1+total commits)
ln(1+max[all projects]) +

100−nb days since last f ile release
100 +

100−nb days since last project admin login
100 , and ProjectCommunication =

ln(1+total bug tracker submissions)
ln(1+max[all projects]) +

ln(1+total mailing list posts)
ln(1+max[all projects]) +

ln(1+total project f orum posts)
ln(1+max[all projects]) .
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data was about 5 years old by the end of our study. The oldest project in our data is 43-years-old

(i.e., older than Sourceforge itself), and was probably imported to Sourceforge from another host-

ing site. We see that projects generally tend to adopt relatively restrictive licenses (mean score of

2.4 out of 3). About a fourth of software projects are targeted at end users as opposed to other

developers or system administrators, and 30% of teams use English as their working language.

Finally, we counted the log number of teams in our dataset that reported using any available pro-

gramming language as a measure of its overall popularity in the community of developers. We

then built a measure of the popularity of the programming languages used by each project by

averaging those popularity scores at the project level.

TABLE 3: PROJECT-LEVEL DESCRIPTIVE STATISTICS

Variable Obs Mean Std. Dev. Min Max

Success score (“activity percentile”) 5,336 78.137 17.873 19.803 99.991

Project age (years) 5,558 5.36 2.74 0 43.10

License restrictiveness 4,871 2.35 0.75 1 3

Software aimed at end user 5,557 0.24 0.36 0 1

Team works in English 5,557 0.30 0.40 0 1

Mean popularity of programming languages 4,777 2.74 0.45 0 3.24

Project age is measured in years. License restrictiveness ranges from 1 (low restrictiveness) to 3 (high restrictiveness),

as in Belenzon and Schankerman (2015). Software projects are considered to be aimed at end users when the team

marks them as such (as opposed to being aimed at other developers or system administrators). We consider that a team

works in English if English is listed as one of its working languages. Finally, to compute the mean popularity of the

programming languages used at the project level, we take the log number of teams in our dataset that report the use

of any given programming language as a measure of overall programming language popularity. We then compute the

average of these popularity scores at the project level (since many teams report using several programming languages

at the same time).

4 Measuring reciprocity

In this section, we describe the construction of our main explanatory variables, i.e., our lab and

field measures of developers’ reciprocal preferences. As explained above, lab-in-the-field exper-

iments typically adopt the following methodology. At the time of the experiment, a sample of

existing organizations is selected. Volunteers from these organizations participate in experimental
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games (the lab part) and the preferences elicited in those games are then related to measures of

organizational performance (the field part). For organizations that are relatively stable, i.e., less

likely to die as a result of bad performance (e.g., a government agency), this is a powerful tool.

However, in the context of OSS as in many others (e.g., private firms operating in competitive

markets or volunteer communities), organizations are much more volatile: some might grow,

while others may quickly fail and die. Thus, when the experiment is run, only the participants

in projects that have not yet died are available to be sampled. More generally, the activity level

of a project and thus the effective presence of its members on the research site may impact the

likelihood that they participate in the experiment. This would then generate a sampling bias

where successful organizations are over-represented compared to those that fail.

To overcome this problem, we propose another way to use our lab data in the field. The lab

data serves to validate an analogous field measure of reciprocity based on archival data (or “ac-

tivity traces”), which we can use in order to capture team members and projects that had already

failed by the time of our study. We begin this section by describing our lab measure of reciprocity.

We then discuss the construction of our related field measure, before showing how both variables

are correlated.

4.1 Experimental measure of reciprocity

As described in Section 3.2.2, our subjects in the public goods game reported both unconditional

and conditional contribution decisions. As in Fischbacher et al. (2001)’s seminal paper, we used the

conditional contribution decisions to compute a measure of reciprocal preferences at the developer

level. We defined this measure as the correlation between the player’s conditional contribution

decisions and the corresponding average contribution of the three other members of his or her

group (from 0 to $10, as illustrated in Figure 1). This variable is distributed with a mean of 0.73

and a standard deviation of 0.45. Note that it can only capture positive reciprocity, not negative

reciprocity, since in the standard public good games we used, there was no opportunity to pay a

personal cost to decrease others’ earnings.20

While directly inspired by Fischbacher et al. (2001), the experimental measure of reciprocity

that we defined was computed as a simple correlation that captures the subject’s willingness to

be conditionally cooperative in the public goods game (i.e., behave reciprocally). This measure

has the benefit of simplicity. It also had a direct analog in our field setting, as we explain in

20The worst you can do to hurt others is to contribute 0, which is also the best for your own private payoff.
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the next section. By comparison, Fischbacher et al. (2001) classify their student subjects in three

exclusive categories, based on a visual examination of their conditional contribution patterns:

(i) free-riders, who never contribute regardless of the contributions of others (this would imply

a correlation of zero in our setting), (ii) conditional cooperators, who match the contributions

of the other members of their group (this would imply a correlation of 1 in our setting), and

(iii) conditional cooperators with a “self-serving bias” or “weak conditional cooperators” (Rustagi

et al., 2010) who contribute to the public good, but generally less than others (this would imply a

positive correlation of less than 1 in our setting).21

4.2 Field measure of reciprocity

The next step in our study was to propose a field measure of reciprocity, inspired by the lab mea-

sure, that uses the observed patterns of contributions. The general idea was to measure the cor-

relation between a participant’s contributions in any given month with the sum of contributions

made by his or her team members in the previous month. This measure might however be biased

since both the contributions of a given developer and those of his or her team members in the

previous period might be affected by common external factors. Suppose, for instance, that a pro-

ductivity shock affects the project, such as one participant making a breakthrough that facilitates

contributions by all the others. Such a shock, unobservable to us, could, in theory, simultaneously

have affected the contribution level of a developer and those of his or her team members in the

previous period. We might thus incorrectly conclude, based on a positive correlation, that the

individual was behaving reciprocally.

We thus proposed and built a field measure of reciprocity that corrected for this concern. For

each developer, we computed the correlation between his or her contributions at the project ×

month level and the predicted contributions of his or her fellow team members in the previous

month. This predicted measure used the variation in the sum of contributions made by their

own collaborators on the other projects that they pursued independently. By “independently”,

we mean that we required that the developer under consideration did not himself or herself con-

21Some differences between our pool of OSS developers and the populations of students typically used in lab ex-

periments are noteworthy. Only 4% of our subjects could be classified as free-riders (compared to 20-30% in student

populations), 48% were perfect reciprocators, and 41% were weak reciprocators. Finally, 7% of our subjects uncondi-

tionally contributed all of their endowment to the public good (an altruistic pattern of contributions that is typically not

observed among students).
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tribute to those other projects, and thus never directly interacted with the collaborators of his or

her team members. We provide the formal description of the measure in Appendix A.

Figure 4 provides a graphical illustration of this strategy. For each developer i in our sample,

we measure i’s reactions in t to the monthly variation in contributions of his/her team members j

in t− 1, as predicted by the exogenous variation in contributions of their own team members k in

t− 2 on the projects that they pursue without developer i’s involvement.

FIGURE 4: BUILDING A MEASURE OF RECIPROCITY BASED ON FIELD “ACTIVITY TRACES”

When computing the measure this way, we found that 3,700 out of the 8,250 developers for

whom we can compute a field measure of reciprocal preferences in our final sample have a mea-

sure of reciprocity that is negative (i.e., they tend to decrease their level of contribution to a

given project in the next period whenever their collaborators increase their own in the current

period). This could possibly be an example of “altruistic” developers who care about providing as

much public good as possible, so that when their collaborators increase their contribution levels

in a given team, they switch to contributing to other, relatively less well developed open source

projects. Such preferences cannot be captured by our experimental design where subjects are faced

with a single common project. Alternatively, this pattern could be consistent with a scenario of

substitutable inputs: if two programmers are perfect substitutes, and one developer makes a con-

tribution, this contribution can no longer be made by the other developer. Either way, in order to

increase the conceptual link between our field and lab measures where participants cannot con-

tribute negatively to the public good, we defined our field measure of reciprocity as the maximum
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of zero and of the correlation calculated above. This variable is distributed with a mean of 0.24, a

standard deviation of 0.62, and a min and max value of 0 and 11.05, respectively.

Table 4 explores the correlation between our lab and field measures of reciprocity. We can see

from column (1) that both variables are strongly correlated: when the lab measure increases from

0 to 1, the field measure increases by an average of 0.5. Interestingly, developer’s age, gender and

education level (column (2)), as well as their self-reported motives for contributing (column (3)),

do not appear to be significantly related to their reciprocity preferences.

TABLE 4: CORRELATION BETWEEN LAB AND FIELD MEASURES

(1) (2) (3)

Reciprocity field Reciprocity field Reciprocity field

Reciprocity lab 0.50∗∗ 0.50∗∗ 0.49∗

(0.22) (0.24) (0.25)

Age 0.00 0.00

(0.01) (0.01)

Female 0.72 1.23

(0.77) (1.14)

Education level -0.00 -0.02

(0.06) (0.07)

Motive: Ideology 0.25

(0.22)

Motive: Like to learn 0.24

(0.34)

Motive: Own use 0.07

(0.20)

Motive: Establish reputation 0.33

(0.31)

Motive: Pay -0.03

(0.19)

Regression type: cross-sectional, developer level

R-squared 0.01 0.03 0.06

N. of obs 231.00 230.00 210.00

OLS estimates with robust standard errors in parentheses. Column (1) includes no control, column (2) includes developers’ self

reported demographics, and column (3) adds their reported motives for contributing to OSS.
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5 Reciprocity and the success or failure of organizations

In the last part of the paper, we show that correcting for sampling bias generates new findings

about the role of reciprocity in the success of organizations. We present these results in Section

5.1, and test the underlying theoretical mechanism in Section 5.2.

5.1 Reciprocity and failure

We set the stage in Table 5, where we link our experimental measure of reciprocity at the team level

to average project-level success in our “lab-in-the-field” sample. In most cases, we only recruit

one developer from each project through our experiment, so that a single lab measure serves as a

proxy for the average reciprocity level of the team. For 11% of the projects (i.e., 131 out of 1143),

we capture more than one developer per team and therefore average their lab reciprocity scores.

In all of the following analyses, we standardize the activity percentile variable. As a result,

the coefficients we report represent the effect of reciprocity in terms of standard deviations of

the success score in the underlying population of projects. When we apply the lab-in-the-field

method directly (i.e., we do not correct for sampling bias), we obtain the same result as that found

in the previous literature. In column (1), we see that moving from no reciprocity to full reciprocity

at the team level (i.e., the correlation between subjects’ contributions in the experiment and the

observed contributions of their team members shifts from 0 to 1) is associated with a significant

0.12 standard deviation increase in the success score.

In column (2), we add controls for project level characteristics. Our coefficient of interest re-

mains unchanged (it slightly increases to a value of 0.13). Among the control variables, the one

most significantly associated with success captures whether the team uses English as a working

language (this is associated with a 0.19 standard deviation increase in the success score). In col-

umn (3), we further add some controls for subjects’ demographic characteristics and self-reported

motives for contributing to OSS. This results in an increase in the statistical significance and mag-

nitude of our coefficient of interest (which reaches a value of 0.16). We also see that teams that

include more women and are that relatively more motivated by their reputation generally achieve

significantly higher success scores.
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TABLE 5: SUCCESS AND SURVIVAL: LAB-IN-THE-FIELD SAMPLE

(1) (2) (3)

success score success score success score

Mean reciprocity lab 0.12∗∗ 0.13∗∗ 0.16∗∗∗

(0.06) (0.06) (0.06)

Project age 0.00∗ 0.00∗

(0.00) (0.00)

License restrictiveness -0.01 -0.00

(0.03) (0.04)

Software aimed at end user 0.12∗ 0.15∗∗

(0.06) (0.07)

Team works in English 0.19∗∗∗ 0.18∗∗∗

(0.06) (0.06)

Project uses popular programming language -0.09∗ -0.04

(0.05) (0.05)

Mean age 0.01∗

(0.00)

Mean female 0.38∗∗∗

(0.12)

Mean education level 0.01

(0.02)

Mean motive: Ideology -0.03

(0.08)

Mean motive: Like to learn -0.11

(0.13)

Mean motive: Own use 0.03

(0.09)

Mean motive: Establish reputation 0.22∗∗

(0.09)

Mean motive: Pay -0.00

(0.05)

Regression type: cross-sectional, project level

R-squared 0.00 0.26 0.25

N. of obs 1143.00 1013.00 933.00

OLS estimates with robust standard errors in parentheses. Column (1) includes no control, column (2) includes project-level charac-

teristics, and column (3) adds developers’ self-reported demographics and motives for contributing to OSS (those scores are averaged

if there is more than one subject per project).
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From there, the rest of the paper shows that if we use our field measure of reciprocity on our

expanded sample of organizations and their members, we obtain much more nuanced results. We

begin by providing a graphical representation of our main result in Figure 5. We divide projects

into three categories: (i) dead projects, defined as those that did not receive any contribution in

the last 12 months of our time period; (ii) active but low-success projects, which have an average

activity percentile that is lower than the median in the sample; and (iii) active and high-success

projects, which have an average activity percentile greater than the median in the sample.22 For

these three different types of projects we plot the proportion of high reciprocators, defined as

those that have a field reciprocity measure above the 75th percentile. Consistent with previous

lab-in-the-field evidence, Figure 5 shows that low-success projects have an average of 40% of high

reciprocators in their team, while high-success projects have 50% of high reciprocators – a 25%

increase in proportion. Strikingly, however, dead projects do not significantly differ from highly

successful ones in terms of the share of high reciprocators in their teams: 52% on average.

FIGURE 5: SUCCESS AND FAILURE OF PROJECTS WITH THE SHARE OF CONDITIONAL COOPERATORS

22For the purpose of this figure, we only include projects with at least two developers, and for which we can compute

a field measure of reciprocity for a least a third of the team members. Our subsequent regression analysis releases these

constraints to establish the robustness of this result.
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This graphical analysis is confirmed in a regression framework. In Table 6, we examine the

relationship between the proportion of high reciprocators in a given OSS team and project-level

performance using our field measure of reciprocity. All regressions control for project-level char-

acteristics (i.e., age, license restrictiveness, target user population, English as a working language,

popularity of the programming languages used), and rely on robust standard errors for inference.

In column (1) the dependent variable is a binary variable indicating whether the project is dead or

not (i.e., did not receive any contribution in the last 12 months of our time period). Moving from

an organization with no high reciprocators to one composed only of highly reciprocal members is

associated with a 12% increase in the probability of project failure and death.

Next, we examine how the proportion of high reciprocators influences team success. To do

so, we use the activity percentile variable. In column (2), we see that groups with a high share of

highly reciprocal members achieve better success scores. Moving from a team with no high recip-

rocators to one composed only of this type is associated with a 0.17 standard deviation increase

in the activity percentile. This relationship becomes stronger in column (3), where we only retain

projects that did not fail and remained active over the period.

In columns (4) to (6), we reproduce columns (1) to (3), but attempt to increase the precision of

our estimates by excluding projects in which we cannot compute our field measure of reciprocity

for at least one third of the team members. With this restriction, the link between team level reci-

procity and the probability of failure becomes stronger (column (4)), while the link with project

success becomes statistically insignificant (column (5)). However, we recover this significant pos-

itive relationship when we restrict our sample of projects to those that did not fail over the period

(column (6)).
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TABLE 6: SUCCESS AND SURVIVAL: EXPANDED SAMPLE

(1) (2) (3) (4) (5) (6)

project dead success score success score project dead success score success score

Share of high reciprocators 0.12∗∗∗ 0.17∗∗ 0.19∗∗ 0.15∗∗∗ 0.11 0.21∗∗

(0.04) (0.08) (0.09) (0.05) (0.08) (0.10)

Project age -0.00∗∗∗ 0.00∗∗∗ 0.00∗ -0.00∗∗∗ 0.00∗∗∗ 0.00∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

License restrictiveness 0.03∗ -0.07∗ -0.02 0.05∗∗ -0.06 -0.01

(0.02) (0.03) (0.04) (0.02) (0.04) (0.04)

Software aimed at end user 0.05 0.06 0.09 0.05 0.07 0.09

(0.04) (0.06) (0.06) (0.04) (0.07) (0.07)

Team works in English -0.08∗∗ 0.26∗∗∗ 0.20∗∗∗ -0.08∗∗ 0.25∗∗∗ 0.18∗∗∗

(0.04) (0.06) (0.06) (0.04) (0.06) (0.06)

Project uses popular programming language -0.02 -0.02 -0.06 -0.02 -0.05 -0.06

(0.04) (0.05) (0.05) (0.04) (0.05) (0.05)

Regression type: cross-sectional, project level

R-squared 0.02 0.06 0.07 0.03 0.05 0.07

N. of obs 1142.00 1142.00 551.00 1049.00 1049.00 510.00

OLS estimates with robust standard errors in parentheses. The dependent variable in columns (1) and (4) takes the value 1 if the

project died during our time period. The dependent variable in columns (2)-(3) and (5)-(6) is the project-level standardized success

score. Columns (1) and (2) use our full sample of projects, while column (3) only retains projects that survive during our entire time

period. Columns (4) and (5) exclude all projects from the full sample for which we cannot compute the field measure of reciprocity for

at least one third of the team members (to increase the precision of our estimates), whereas column (6) restricts this sample to projects

that survive during our entire time period.

Our results at this point show that sampling bias may have prevented the extant lab-in-the-

field literature from replicating lab-based results that imply that reciprocal preferences can also

lead to increased failure rates at the team level. In Appendix B we consider a number of robust-

ness checks on these results. In particular, our results are robust to various ways of defining project

death and field reciprocity (see Appendix C). We can also exclude the interpretation according to

which dead projects would in fact be the most successful ones – having reached a mature stage

where contributions are no longer needed – by showing that (i) projects are more likely to fail at

an early development stage, and (ii) mature projects are actually the ones that are most actively

developed (those results are reported in Appendix B). One last concern could be particularly wor-

risome, and so we address it in the main text. Namely, our field measure of reciprocity could
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capture the effect of individual-level characteristics other than reciprocal preferences, such as de-

velopers’ cognitive abilities.

To demonstrate that omitted variable bias is unlikely to influence our field results Table 7

reproduces the first three columns of Table 6, but considers the sample of projects that only have

one contributor, where reciprocity preferences should not normally determine their success or

failure. When we do this, we fail to find any strong statistical link between each developer’s level

of reciprocity and either the success of his or her project, or the probability that it eventually fails

and dies. This suggests that our results are indeed motivated by the reciprocal dynamics that we

seek to capture at the team level.

TABLE 7: PROJECTS WITH A SINGLE CONTRIBUTOR

(1) (2) (3)

Project dead Success score Success score

High reciprocator 0.01 0.10∗ -0.06

(0.02) (0.05) (0.08)

Project age 0.00∗∗∗ -0.00∗∗∗ -0.00∗∗

(0.00) (0.00) (0.00)

License restrictiveness 0.01 -0.06 -0.13∗∗

(0.01) (0.04) (0.06)

Software aimed at end user 0.01 0.28∗∗∗ 0.26∗∗

(0.03) (0.08) (0.13)

Developer works in English -0.11∗∗∗ 0.35∗∗∗ 0.36∗∗∗

(0.03) (0.08) (0.14)

Project uses popular programming language 0.02 0.02 0.05

(0.02) (0.06) (0.12)

Regression type: cross-sectional, project level

R-squared 0.04 0.04 0.08

N. of obs 1433.00 1433.00 265.00

OLS estimates with robust standard errors in parentheses. This table replicates columns (1)-(3) of Table 6 using the sample of single-

authored projects. The dependent variable in column (1) takes the value 1 if the project died during our time period. The dependent

variable in columns (2)-(3) is the project level standardized success score. Columns (1) and (2) use our full sample of projects, while

column (3) only retains projects that survive during our entire time period.
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5.2 Mechanism: the reciprocity rollercoaster

In the lab, reciprocal preferences typically work as a catalyst, which equally amplifies positive

and negative contribution dynamics at the group level. As a result, the presence of many highly

reciprocal members in a team leads to the decay of cooperation whenever some observe that others

do not match their contribution level in any given period (Fischbacher and Gächter, 2010). At

the same time, strong reciprocity makes it possible to sustain high levels of cooperation when

everybody contributes at a relatively high rate (Page et al., 2005).

Our paper is the first to provide a field test of this micro-level mechanism. We hypothesize

that highly reciprocal individuals will react positively to increased contributions from team mem-

bers, but will also decrease their contributions at a higher rate if they believe that others do not

exert sufficient effort. An organization with a high proportion of strong reciprocators is therefore

likely to perform at above-average levels when contributions are already relatively high. On the

other hand, the same organization is predicted to have a harder time recovering from a period of

inactivity, resulting in a significant increase in the probability of death. Note that for cooperation

to collapse within this framework, it is sufficient for team members to believe that others are not

contributing. This is especially important in real-world contexts where actual contributions (i.e.,

contributions that are observable to other team members) often imperfectly reflect individuals’

effort levels (i.e., their willingness to cooperate). Over the course of many months or years, some

periods of inactivity in our virtual team setting will doubtlessly result from idiosyncratic shocks at

the individual or project level. Such shocks could then affect beliefs about individual effort levels,

and ultimately determine the dynamics of cooperation within the team.

In Table 8, we take advantage of the panel structure of our data on individual team contri-

butions to analyze the dynamics of cooperation within projects at a monthly frequency, over the

eight-year period covered by our study. To do this, we run developer-level panel regressions

where our unit of observation is at the developer x project x month level.

We first analyze whether the share of highly reciprocal developers at the team level impacts

the probability that a project recovers from a period of inactivity (column (1)). In this regression,

we define inactivity as a period of three consecutive months without any team contribution, and

include an interaction term indicating whether the developer is of the high reciprocity type. Our

dependent variable is a dummy indicating whether the developer made any contribution to the

project in the following month. The regression controls for all available project-level characteris-
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tics and reports robust standard errors clustered at the project level. We see that facing a period

of inactivity increases the probability that the developer will make no contribution in the subse-

quent month by 13% when he or she is not highly reciprocal. Consistent with our hypothesis,

this probability increases by an additional 10% in the case of a highly reciprocal developer. Con-

versely, when contributions have been made to the project in previous periods, highly reciprocal

developers have a 10% lower probability of making no contribution in the following period.

These results are confirmed in column (2), where we take the total number of code contri-

butions (or “commits”) made by a developer to a project in any given month as an alternative

dependent variable. The specification is the same as in column (1), except that we now include

developer level fixed effects in order to properly account for unobservable characteristics at the

individual level. We obtain similar results. Facing a period of inactivity decreases the average

number of contributions made in the current period by 1.25 for non-reciprocators. In the case of

high reciprocity types, this number decreases to -3.54, a threefold increase in magnitude.23

Finally, column (3) relies on the same econometric specification as column (2), but focuses on

the benefits of reciprocal preferences at the team level, i.e., the fact that they typically reinforce

cooperative dynamics. For each project, we define a period of “high activity” as a period in which

the number of contributions made in the three previous months was higher than the median num-

ber of monthly contributions over the history of the project. We find that non-highly reciprocal

developers make an average of 2.3 more contributions following a period of high activity, while

highly reciprocal ones make an average of 5.5 more contributions – a 150% increase in contribu-

tion levels. Taken together, these results provide proof of the micro-level mechanism that we posit

behind our aggregate results: highly reciprocal organizations are both more highly represented

among top-performers (at least conditional on survival), but are also more likely to experience

cooperation breakdowns and fail.

23In order to compute the effect size on highly reciprocal types, the baseline coefficient is added to the interaction

term: −1.25− 2.28 = −3.54.
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TABLE 8: MICRO-LEVEL MECHANISM

(1) (2) (3)

No contribution Total no. of commits Total no. of commits

No contribution over last three periods 0.13∗∗∗ -1.25∗∗

(0.01) (0.61)

interaction with high reciprocity type 0.10∗∗∗ -2.28∗∗∗

(0.01) (0.79)

Above-median contributions over last three periods 2.31∗∗

(1.03)

interaction with high reciprocity type 3.16∗∗

(1.33)

High reciprocity type -0.10∗∗∗ x x

(0.01)

Project age 0.00∗∗∗ -0.00∗∗ -0.00∗∗

(0.00) (0.00) (0.00)

License restrictiveness 0.00 0.08 0.08

(0.00) (0.10) (0.10)

Software aimed at end user -0.01 0.07 0.06

(0.00) (0.18) (0.18)

Team works in English -0.01 0.44∗ 0.50∗

(0.00) (0.25) (0.27)

Project uses popular programming language 0.00 -0.31∗ -0.34∗

(0.00) (0.17) (0.19)

Regression type: panel, developer × project ×month level

Developer fixed effect NO YES YES

R-squared 0.12 0.01 0.02

N. of obs 2.1e+05 2.1e+05 2.1e+05

OLS estimates with robust standard errors clustered at the developer level in parentheses. The dependent variable in column (1) is a

dummy variable indicating whether no contribution is made by the developer in a given project ×month. We regress it on a variable

that captures whether no contributions were made by team members in the previous 3 months, interacted with the social type of the

developer (highly reciprocal or not). The dependent variable in columns (2)-(3) is the number of code contributions (or “commits”)

made by the developer in a given project × month. We regress it on a variable that captures whether team members made above

median contributions to the project in the previous 3 months, interacted with the social type of the developer (highly reciprocal or

not). Note that columns (2) and (3) include developer-level fixed effects (this is why the coefficient on the variable “high reciprocity

type” is dropped from those regressions).
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6 Conclusion

Public goods problems are ubiquitous within organizations. Because it is impossible to enumer-

ate (or even foresee) the myriad of cooperation opportunities that may arise within organizations,

individuals often need to cooperate voluntarily (i.e., at a cost to themselves) in order to achieve

efficient collective outcomes. Over the past decades, however, experimental research has shown

that cooperative equilibria are typically unsustainable at the group level (Ledyard, 1994; Chaud-

huri, 2011). Because most people endorse the norm of reciprocity in social dilemma situations

(Gouldner, 1960; Dufwenberg and Kirchsteiger, 2004; Sobel, 2005), highly reciprocal individuals

reduce their contribution levels when confronted with signals that others do not match their ef-

forts. Strong reciprocity therefore engenders the decay of cooperation in repeated public goods

experiments (Fischbacher et al., 2001; Fischbacher and Gächter, 2010), and can only lead to above

average performance through mechanisms that enable it at the group level, for instance, by de-

signing employment contracts that screen non-reciprocal workers (Kosfeld and Von Siemens, 2011;

Bartling et al., 2012).

This paper provides the first field evidence that strong reciprocity is indeed a double-edged

sword. We study the context of open source software development (OSS) – where team mem-

bers need to cooperate voluntarily towards the provision of a public good – and link lab and field

measures of reciprocity to project-level archival data to demonstrate that highly reciprocal teams

are not necessarily more successful. They outperform other teams conditional on survival, but

are also more likely to experience cooperation breakdowns. Moreover, we use the detailed panel

structure of our data to pinpoint the micro-level mechanism behind these aggregate results. Recip-

rocal preferences work as a catalyst at the team level: they reinforce the cooperative equilibrium

as long as team members receive positive signals, leading to top-notch performance, but they also

increase the probability of a cooperation breakdown in the face of negative news.

At a methodological level, our paper adds to the fast-growing “lab-in-the-field” literature.

This methodology is a powerful tool for organizational research. The experimenter relies on val-

idated lab paradigms to elicit psychological traits or preferences that are difficult to identify “in

the wild”, and links them to outcomes of theoretical interest in the field. In this process, he or

she can maintain a close connection with laboratory-based research, thus alleviating the tension

between internal and external validity in experimental research (Gneezy and Imas, 2017). At the

same time, the lab-in-the-field method is most useful to disentangle competing micro-level mech-
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anisms that could potentially drive aggregate empirical regularities, therefore contributing to the

micro-foundation movement in organizational behavior (Felin and Foss, 2005; Felin et al., 2015;

Bitektine et al., 2018).

Several previous studies have used this methodology to test the link between reciprocity and

group-level performance (Barr and Serneels, 2009; Rustagi et al., 2010; Carpenter and Seki, 2011).

Surprisingly, all of them report an unambiguous positive relationship between reciprocal prefer-

ences and organizational success. This result represents a relative disconnect with the lab liter-

ature, where reciprocal preferences trigger the decay of cooperation whenever highly reciprocal

types observe that others’ efforts are not commensurate with their own. We hypothesize that

this disconnect may result from the fact that the lab-in-the-field method requires that researchers

run their experiments directly within the natural environment of interest. We argue that this can

introduce a significant sampling bias: previously failed organizations are much less likely to be

included in the design since former members may no longer be present on the research site. Thus,

because they rely on a design that tends to ignore failed projects and their members, previous

studies may not capture the dark side of reciprocal dynamics at the organizational level. To ad-

dress this problem, we propose an additional way to use lab data in the field, i.e., to validate an

analogous field measure based on archival data (or field “activity traces”) to expand our research

sample, notably in the direction of previously failed organizations.

Our field results suggest that mechanisms that screen workers according to their social type

are unlikely to generate a self-sustained cooperative equilibrium. In an uncertain world in which

organizations are subject to adverse shocks and imperfect monitoring, implicit norms define the

nature of the cooperation game that agents play on a daily basis, and “relational contracts” guide

the interpretation of the (noisy) signals received by individual members (Chassang, 2010; Gibbons

and Henderson, 2012; Acemoglu and Jackson, 2015). Like all others, highly reciprocating teams are

subject to “unforeseen contingencies” (Kreps, 1990). Depending on the members’ previous shared

history (or “relational knowledge”), such adverse shocks may or may not trigger the unraveling

of cooperation within the organization. Future experimental research on cooperation should seek

to explore how relational contracts can be defined in a way that minimizes the probability of

inefficient cooperation breakdowns among reciprocally-minded workers (Fudenberg et al., 2012;

Gibbons et al., 2020).
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Appendix

A Constructing the field measure of reciprocity

This appendix formally describes the construction of our measure of reciprocity in the field. Sim-

ilar to our experimental design, the idea is to measure the contributions of an individual made

in reaction to variations in the aggregate contributions of his or her team members in the previ-

ous period. The main issue is that those contributions could all be driven by common factors at

the project level. This could be a technological shock or breakthrough, which would lead us to

wrongly conclude that members of a project behave reciprocally. In the spirit of an instrumental

variables approach, we therefore measure the variation in the contribution level of each developer

i within our sample of 10,537 developers at the project × month level as a function of the lagged

contributions of his or her team members, which we predict using the (exogenous) variation in

the contributions of their own team members on the projects that they pursue independently (i.e.,

where developer i does not participate).

Specifically, consider developer i working on a set of projects Pi at time t, for whom we want

to measure reciprocity based on field data. For a given project p ∈ Pi, we denote yipt the contri-

butions of that individual. An OLS specification of the relationship between the contributions of

individual i at time t and the contributions of the other members of group p at time t− 1 can be

expressed as:

yipt = β0 + β1∑
j 6=i

yjpt−1 + βi + βp + γipt

It would be natural to define β1 as a measure of reciprocal behavior in the field.

However, in practice, because some projects might experience common productivity shocks, it

is likely that:

corr

(
∑
j 6=i

yjpt−1, γipt

)
6= 0

We therefore construct a source of exogenous variation for yjpt−1. To do this, we predict yjpt−1

based on the variation in the contributions of developer j’s team members to the other projects to

which he or she contributes at time t− 2, excluding those where i participates (i.e., p′ ∈ Pj/p, p′ /∈

Pi):
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yjpt−1 = α0 + α1 ∑
p′∈Pj/p,p′/∈Pi

∑
k∈p′

ykp′t−2 + αj + αp + ε jpt−1 (1)

Columns (1) and (2) of Table A1 present the results of both the OLS and IV regressions. The

contributions of j’s team members to his or her other projects at time t− 2 is a strong instrument

for yjp,(t−1) (the F-statistic reaches a value of 92). On average, if team members contribute more to

projects p′ ∈ Pj/p, p′ /∈ Pi, developer j will, in turn, contribute significantly more to project p.

TABLE A1: ESTIMATING FIELD RECIPROCITY

(1) (2)

ln(commits per month)p ln(commits per month)p

Lagged contributions of team members in projects p′ 0.09∗∗∗ 0.08∗∗∗

(0.01) (0.00)

R-squared 0.04 0.04

N. of obs 9.9e+05 9.9e+05

Robust standard errors in parentheses
∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01

For each developer, our measure of field reciprocity is therefore computed as the correlation

between his or her contributions yipt and the predicted value ŷjpt−1 of the contributions of his or

her team members in the previous month, using ykp′t−2 as the explanatory variable, as specified in

Equation 1. If this correlation is negative, our reciprocity measure is constrained to take the value

0.

B Robustness

B.1 Measure of death of a project

A potential concern with our measure of death at the project level could be that it actually captures

highly successful projects that have reached a mature stage where contributions are no longer

needed. Two main arguments challenge this view. First, projects tend to die relatively more fre-

quently at an early development stage, as can be seen from Figure A1. Second, as can be seen from

Figure A2, the average number of commits that goes into each project tends to increase with its

development stage, so that projects are actually most actively developed when they reach more

advanced development stages.
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FIGURE A1: DISTRIBUTION OF STAGE COMPARING DEAD AND ACTIVE PROJECTS
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Finally, our main results are robust to restricting our sample to projects in early development

stages. In Table A2, column (1) excludes projects that finish in production and mature stages,

while column (2) further excludes projects that finish in beta version.

TABLE A2: RESTRICTING THE SAMPLE TO PROJECTS IN EARLY PHASE

(1) (2)

Project dead Project dead

Share of high reciprocators 0.10∗ 0.16∗∗∗

(0.06) (0.05)

R-squared 0.11 0.11

N. of obs 530.00 894.00

Robust standard errors in parentheses.

All regressions include project-level controls (see Table 6 in main text).
∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01

Moreover, we adopted a particular definition of dead projects: projects that received no contri-

butions in the last 12 months of our sample. There are no official administrative data that record

the death of a project, so we chose 12 months since it both appeared reasonable and allowed us to

split our sample equally between dead projects (52%) and active projects (48%). We nevertheless

examine the robustness of our results to changes in the definition, varying the number of months

without contributions at the end of the project. In column (1), we consider a period of 6 months,

and in column (2), a period of 18 months. In all of the cases, an increase in the proportion of

reciprocators in the group significantly increases the probability of project death.

TABLE A3: DEFINITION OF DEAD PROJECT

(1) (2)

Project dead (6) Project dead (18)

Share of high reciprocators 0.16∗∗∗ 0.11∗∗

(0.05) (0.05)

R-squared 0.10 0.10

N. of obs 927.00 927.00

Robust standard errors in parentheses.

All regressions include project-level controls (see Table 6 in main text).
∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01

One concern with our definition of dead projects is that projects could have migrated to a dif-
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ferent platform. This is especially a concern with the competing platform Github, which increased

in prominence during our sample period.24 To address this concern, we collected information on

the Github projects and, in the main specifications of Table 6, removed all projects that migrated

to Github. In Table A4, we do not exclude these projects and show that the results are very similar,

indicating that this was not, in fact, a major concern for our estimation.

TABLE A4: RESTRICTING THE SAMPLE TO PROJECTS THAT DID NOT MIGRATE TO GITHUB

(1) (2) (3)

Success score Project dead Success score

Share of high reciprocators 0.05 0.17∗∗∗ 0.16∗

(0.08) (0.05) (0.10)

R-squared 0.22 0.11 0.13

N. of obs 927.00 927.00 435.00

Robust standard errors in parentheses.

All regressions include project-level controls (see Table 6 in main text).
∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01

B.2 Definition of high reciprocity types

In Table 6 of the paper, we classify developers into two categories – high reciprocity and low

reciprocity – according to the median value of our field measure of reciprocity. This approach is

consistent with the lab-in-the-field literature on reciprocity, which typically distinguishes between

“weak” and “strong” reciprocators (Fallucchi et al., 2017). Our results are relatively robust to vari-

ations in the way we define high reciprocity types. First, in Table A5, we define a high reciprocity

type as a developer that has a field measure of reciprocity in the top quartile (as opposed to above

median). Second, instead of assigning discrete types to developers, Table A6 reports the impact of

our field measure of reciprocity when averaged over all developers in the project.

24The competitor launched by Google, called Google Code, never managed to challenge Sourceforge.
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TABLE A5: HIGH RECIPROCITY – THE 75 PERCENTILE

(1) (2) (3)

Success score Project dead Success score

Share of high reciprocators (top quartile) -0.01 0.16∗∗∗ 0.08

(0.10) (0.06) (0.11)

R-squared 0.22 0.11 0.13

N. of obs 927.00 927.00 435.00

Robust standard errors in parentheses.

All regressions include project-level controls (see Table 6 in main text).
∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01

TABLE A6: SUCCESS AND SURVIVAL WITH AVERAGE TEAM RECIPROCITY

(1) (2) (3)

Success score Project dead Success score

Average reciprocity in project -0.13∗∗∗ 0.07∗∗ -0.04

(0.05) (0.03) (0.04)

R-squared 0.22 0.11 0.13

N. of obs 927.00 927.00 435.00

Robust standard errors in parentheses.

All regressions include project-level controls (see Table 6 in main text).
∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01

B.3 Proportion of team members with a field measure of reciprocity

In the main specification of Table 6, we imposed the constraint that at least one third of the group

members should have a measure of field reciprocity to guarantee that the average share of high

reciprocators was not measured with excessive noise. In Table A7, we remove this constraint,

whereas in Table A8 we impose a more stringent one, i.e., that we can compute a field measure

of reciprocity for at least half of the team members. The result on the death of the project is

preserved. The result on the effect of the share of high reciprocators on the success of the project

when restricting projects to those still active (column (3) in the tables) is no longer significant,

although the magnitude and the size remain the same. For the case of no constraint, the standard

deviation increases because the measure is less precise. For the case of the stronger constraint, the

problem is that the number of observations is lower.
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TABLE A7: NO CONSTRAINT ON PROPORTION

(1) (2) (3)

Success score Project dead Success score

Share of high reciprocators 0.11 0.14∗∗∗ 0.15

(0.08) (0.05) (0.09)

R-squared 0.22 0.11 0.13

N. of obs 1011.00 1011.00 473.00

Robust standard errors in parentheses.

All regressions include project-level controls (see Table 6 in main text).
∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01

TABLE A8: AT LEAST HALF OF PROJECT MEMBERS WITH MEASURE OF RECIPROCITY

(1) (2) (3)

Success score Project dead Success score

Share of high reciprocators -0.01 0.23∗∗∗ 0.17

(0.09) (0.05) (0.11)

R-squared 0.20 0.12 0.13

N. of obs 806.00 806.00 392.00

Robust standard errors in parentheses.

All regressions include project-level controls (see Table 6 in main text).
∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01

B.4 Robustness of Table 8

Table 8 addresses the question of whether a high share of reciprocators serves as an amplification

of variations, making it both more likely to fail in bad times and more likely to succeed in good

times. To define good and bad times, we used the past history of the project, and in the main

specification of Table 8, we used the three-month lag. We explore robustness by considering a

two-month lag in Table A9 and a four-month lag in Table A10.
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TABLE A9: TWO-PERIOD LAG

(1) (2) (3)

No contribution Total no. of commits Total no. of commits

No contribution over last three periods 0.14∗∗∗ -1.52∗∗

(0.01) (0.72)

interaction with high reciprocity type 0.10∗∗∗ -2.59∗∗∗

(0.01) (0.90)

High reciprocity type -0.11∗∗∗ x x

(0.01)

Above median contributions over last three periods 2.27∗∗

(0.96)

interaction with high reciprocity type 3.07∗∗

(1.19)

R-squared 0.12 0.02 0.02

N. of obs 2.1e+05 2.1e+05 2.1e+05

Robust standard errors clustered at the developer level in parentheses.

All regressions include project-level controls (see Table 8 in main text).

Columns (2) and (3) include developer fixed effects.
∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01
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TABLE A10: FOUR-PERIOD LAG

(1) (2) (3)

No contribution Total no. of commits Total no. of commits

No contribution over last three periods 0.12∗∗∗ -1.13∗∗

(0.01) (0.56)

interaction with high reciprocity type 0.09∗∗∗ -2.16∗∗∗

(0.01) (0.73)

High reciprocity type -0.10∗∗∗ x x

(0.01)

Above median contributions over last three periods 2.32∗∗

(1.10)

interaction with high reciprocity type 3.53∗∗

(1.43)

R-squared 0.11 0.01 0.02

N. of obs 2.1e+05 2.1e+05 2.1e+05

Robust standard errors clustered at the developer level in parentheses.

All regressions include project-level controls (see Table 8 in main text).

Columns (2) and (3) include developer fixed effects.
∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01
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